VASODILATOR EFFECT OF OCTYLMETHOXYCINNAMATE ON HUMAN UMBILICAL ARTERIES
VASODILATOR EFFECT

Palavras-chave

Octylmethoxycinnamate, Endocrine disruptor, Human umbilical artery, Estrogen

Como Citar

Verde, I., & Filipe, J. . (2021). VASODILATOR EFFECT OF OCTYLMETHOXYCINNAMATE ON HUMAN UMBILICAL ARTERIES. Health and Society, 1(02). https://doi.org/10.51249/hes01.02.2021.295

Resumo

Octylmethoxycinnamate (OMC) is a filter for ultraviolet B radiation used in sunscreens to protect skin. There is some evidence about the OMC activity as endocrine disruptor concerning a possible estrogenic activity, but its vascular effects were not still analyzed. The objective was to evaluate the non-genomic effects of the OMC on human umbilical artery (HUA) without endothelium. By mean of an organ bath system, HUA rings without endothelium were contracted by 5-hydroxytryptamine (5HT; 1µM) or by depolarization with KCl (60mM), and the effect of different concentrations of OMC was analyzed. The OMC elicits vasodilator effect on HUA without endothelium contracted by 5-HT (1μM) and by KCl (60mM). The effect was similar for the two contractile agents used. Here, we established that the OMC causes vasodilation of human arteries. This effect is analogous to the non-genomic effect caused by estradiol (E2), which occurs also by and endothelial-independent mechanism.

https://doi.org/10.51249/hes01.02.2021.295
VASODILATOR EFFECT

Referências

Belfort M.A., Saade G.R., Suresh M., Vedernikov Y.P. (1996) Effects of estradiol-17 beta and progesterone on isolated human omental artery from premenopausal nonpregnant women and from normotensive and preeclamptic pregnant women. Am J Obstet Gynecol 174:246-53.

Cairrao E., Alvarez E., Carvas J.M., Santos-Silva A.J., Verde I. (2012) Non-genomic vasorelaxant effects of 17beta-estradiol and progesterone in rat aorta are mediated by L-type Ca2+ current inhibition. Acta Pharmacol Sin 33:615-24. DOI: aps20124 [pii]10.1038/aps.2012.4. URL: https://www.nature.com/articles/aps20124

Carbone S., Szwarcfarb B., Reynoso R., Ponzo O.J., Cardoso N., Ale E., Moguilevsky J.A., Scacchi P. (2010) In vitro effect of octyl - methoxycinnamate (OMC) on the release of Gn-RH and amino acid neurotransmitters by hypothalamus of adult rats. Exp Clin Endocrinol Diabetes 118:298-303. DOI: 10.1055/s-0029-1224153. URL: http://www.ncbi.nlm.nih.gov/pubmed/20198561

Casals-Casas C., Desvergne B. (2011) Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol 73:135-62. DOI: 10.1146/annurev-physiol-012110-142200. URL: http://www.ncbi.nlm.nih.gov/pubmed/19433246

De Coster S., van Larebeke N. (2012) Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J Environ Public Health 2012:713696. DOI: 10.1155/2012/713696. URL: https://pubmed.ncbi.nlm.nih.gov/22991565/

Fausett M.B., Belfort M.A., Nanda R., Saade G.R., Vedernikov Y. (1999) The effects of sex steroids on human umbilical artery and vein. J Soc Gynecol Investig 6:27-31. URL: https://pubmed.ncbi.nlm.nih.gov/10065423/

Filardo E.J., Quinn J.A., Frackelton A.R., Jr., Bland K.I. (2002) Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol 16:70-84. DOI: 10.1210/mend.16.1.0758. URL: https://academic.oup.com/mend/article/16/1/70/2741366

Gomez E., Pillon A., Fenet H., Rosain D., Duchesne M.J., Nicolas J.C., Balaguer P., Casellas C. (2005) Estrogenic activity of cosmetic components in reporter cell lines: parabens, UV screens, and musks. Journal of Toxicology and Environmental Health Part A 68:239-51. DOI: 10.1080/15287390590895054. URL: http://www.ncbi.nlm.nih.gov/pubmed/15799449

Hampl R., Kubatova J., Starka L. (2016) Steroids and endocrine disruptors-History, recent state of art and open questions. J Steroid Biochem Mol Biol 155:217-23. DOI: 10.1016/j.jsbmb.2014.04.013. URL: https://pubmed.ncbi.nlm.nih.gov/24816231/

Hanson K.M., Narayanan S., Nichols V.M., Bardeen C.J. (2015) Photochemical degradation of the UV filter octyl methoxycinnamate in solution and in aggregates. Photochem Photobiol Sci 14:1607-16. DOI: 10.1039/c5pp00074b. URL: https://pubs.rsc.org/en/content/articlelanding/pp/2015/c5pp00074b#!divAbstract

Heneweer M., Muusse M., van den Berg M., Sanderson J.T. (2005) Additive estrogenic effects of mixtures of frequently used UV filters on pS2-gene transcription in MCF-7 cells. Toxicol Appl Pharmacol 208:170-7. DOI: 10.1016/j.taap.2005.02.006. URL: https://www.sciencedirect.com/science/article/pii/S0041008X05000669

Inui M., Adachi T., Takenaka S., Inui H., Nakazawa M., Ueda M., Watanabe H., Mori C., Iguchi T., Miyatake K. (2003) Effect of UV screens and preservatives on vitellogenin and choriogenin production in male medaka (Oryzias latipes). Toxicology 194:43-50. DOI: 10.1016/s0300-483x(03)00340-8. URL: https://pubmed.ncbi.nlm.nih.gov/14636695/

Janjua N.R., Kongshoj B., Andersson A.M., Wulf H.C. (2008) Sunscreens in human plasma and urine after repeated whole-body topical application. J Eur Acad Dermatol Venereol 22:456-61. DOI: 10.1111/j.1468-3083.2007.02492.x. URL: http://www.ncbi.nlm.nih.gov/pubmed/18221342

Klammer H., Schlecht C., Wuttke W., Jarry H. (2005) Multi-organic risk assessment of estrogenic properties of octyl-methoxycinnamate in vivo A 5-day sub-acute pharmacodynamic study with ovariectomized rats. Toxicology 215:90-6. DOI: 10.1016/j.tox.2005.06.026. URL: http://www.ncbi.nlm.nih.gov/pubmed/16112788

Klammer H., Schlecht C., Wuttke W., Schmutzler C., Gotthardt I., Kohrle J., Jarry H. (2007) Effects of a 5-day treatment with the UV-filter octyl-methoxycinnamate (OMC) on the function of the hypothalamo-pituitary-thyroid function in rats. Toxicology 238:192-9. DOI: 10.1016/j.tox.2007.06.088. URL: https://pubmed.ncbi.nlm.nih.gov/17651886/

Krause M., Klit A., Blomberg Jensen M., Soeborg T., Frederiksen H., Schlumpf M., Lichtensteiger W., Skakkebaek N.E., Drzewiecki K.T. (2012) Sunscreens: are they beneficial for health? An overview of endocrine disrupting properties of UV-filters. Int J Androl 35:424-36. DOI: 10.1111/j.1365-2605.2012.01280.x. URL: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2605.2012.01280.x

Kunz P.Y., Fent K. (2006) Multiple hormonal activities of UV filters and comparison of in vivo and in vitro estrogenic activity of ethyl-4-aminobenzoate in fish. Aquat Toxicol 79:305-24. DOI: 10.1016/j.aquatox.2006.06.016. URL: http://www.ncbi.nlm.nih.gov/pubmed/16911836

Lindsey S.H., Liu L., Chappell M.C. (2014) Vasodilation by GPER in mesenteric arteries involves both endothelial nitric oxide and smooth muscle cAMP signaling. Steroids 81:99-102. DOI: 10.1016/j.steroids.2013.10.017. URL: https://pubmed.ncbi.nlm.nih.gov/24246735/

Morohoshi K., Yamamoto H., Kamata R., Shiraishi F., Koda T., Morita M. (2005) Estrogenic activity of 37 components of commercial sunscreen lotions evaluated by in vitro assays. Toxicol In Vitro 19:457-69. DOI: 10.1016/j.tiv.2005.01.004. URL: https://www.sciencedirect.com/science/article/pii/S0887233305000111

Nohynek G.J., Borgert C.J., Dietrich D., Rozman K.K. (2013) Endocrine disruption: fact or urban legend? Toxicol Lett 223:295-305. DOI: 10.1016/j.toxlet.2013.10.022. URL: https://pubmed.ncbi.nlm.nih.gov/24177261/

Prossnitz E.R., Arterburn J.B., Smith H.O., Oprea T.I., Sklar L.A., Hathaway H.J. (2008) Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol 70:165-90. DOI: 10.1146/annurev.physiol.70.113006.100518. URL: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18271749

Schlumpf M., Cotton B., Conscience M., Haller V., Steinmann B., Lichtensteiger W. (2001) In vitro and in vivo estrogenicity of UV screens. Environ Health Perspect 109:239-44. DOI: 10.1289/ehp.01109239. URL: https://pubmed.ncbi.nlm.nih.gov/11333184/

Schlumpf M., Kypke K., Wittassek M., Angerer J., Mascher H., Mascher D., Vokt C., Birchler M., Lichtensteiger W. (2010) Exposure patterns of UV filters, fragrances, parabens, phthalates, organochlor pesticides, PBDEs, and PCBs in human milk: correlation of UV filters with use of cosmetics. Chemosphere 81:1171-83. DOI: 10.1016/j.chemosphere.2010.09.079. URL: https://pubmed.ncbi.nlm.nih.gov/21030064/

Schmutzler C., Hamann I., Hofmann P.J., Kovacs G., Stemmler L., Mentrup B., Schomburg L., Ambrugger P., Gruters A., Seidlova-Wuttke D., Jarry H., Wuttke W., Kohrle J. (2004) Endocrine active compounds affect thyrotropin and thyroid hormone levels in serum as well as endpoints of thyroid hormone action in liver, heart and kidney. Toxicology 205:95-102. DOI: 10.1016/j.tox.2004.06.041. URL: http://www.ncbi.nlm.nih.gov/pubmed/15458794

Schmutzler C., Gotthardt I., Hofmann P.J., Radovic B., Kovacs G., Stemmler L., Nobis I., Bacinski A., Mentrup B., Ambrugger P., Gruters A., Malendowicz L.K., Christoffel J., Jarry H., Seidlova-Wuttke D., Wuttke W., Kohrle J. (2007) Endocrine disruptors and the thyroid gland--a combined in vitro and in vivo analysis of potential new biomarkers. Environ Health Perspect 115 Suppl 1:77-83. DOI: 10.1289/ehp.9369. URL: https://ehp.niehs.nih.gov/doi/full/10.1289/ehp.9369

Schreurs R., Lanser P., Seinen W., van der Burg B. (2002) Estrogenic activity of UV filters determined by an in vitro reporter gene assay and an in vivo transgenic zebrafish assay. Arch Toxicol 76:257-61. DOI: 10.1007/s00204-002-0348-4. URL: https://link.springer.com/article/10.1007/s00204-002-0348-4

Schreurs R.H., Sonneveld E., Jansen J.H., Seinen W., van der Burg B. (2005) Interaction of polycyclic musks and UV filters with the estrogen receptor (ER), androgen receptor (AR), and progesterone receptor (PR) in reporter gene bioassays. Toxicol Sci 83:264-72. DOI: 10.1093/toxsci/kfi035. URL: http://www.ncbi.nlm.nih.gov/pubmed/15537743

Seidlova-Wuttke D., Jarry H., Christoffel J., Rimoldi G., Wuttke W. (2006a) Comparison of effects of estradiol (E2) with those of octylmethoxycinnamate (OMC) and 4-methylbenzylidene camphor (4MBC)--2 filters of UV light - on several uterine, vaginal and bone parameters. Toxicol Appl Pharmacol 210:246-54. DOI: 10.1016/j.taap.2005.05.006. URL: http://www.ncbi.nlm.nih.gov/pubmed/15979666

Seidlova-Wuttke D., Christoffel J., Rimoldi G., Jarry H., Wuttke W. (2006b) Comparison of effects of estradiol with those of octylmethoxycinnamate and 4-methylbenzylidene camphor on fat tissue, lipids and pituitary hormones. Toxicol Appl Pharmacol 214:1-7. DOI: 10.1016/j.taap.2005.11.002. URL: https://pubmed.ncbi.nlm.nih.gov/16368123/

Smiley D.A., Khalil R.A. (2009) Estrogenic compounds, estrogen receptors and vascular cell signaling in the aging blood vessels. Curr Med Chem 16:1863-87. DOI: . URL: https://pubmed.ncbi.nlm.nih.gov/19442151/

Szwarcfarb B., Carbone S., Reynoso R., Bollero G., Ponzo O., Moguilevsky J., Scacchi P. (2008) Octyl-methoxycinnamate (OMC), an ultraviolet (UV) filter, alters LHRH and amino acid neurotransmitters release from hypothalamus of immature rats. Exp Clin Endocrinol Diabetes 116:94-8. DOI: 10.1055/s-2007-1004589. URL: http://www.ncbi.nlm.nih.gov/pubmed/18286425

Watson C.S., Jeng Y.J., Guptarak J. (2011) Endocrine disruption via estrogen receptors that participate in nongenomic signaling pathways. J Steroid Biochem Mol Biol 127:44-50. DOI: 10.1016/j.jsbmb.2011.01.015. URL: https://pubmed.ncbi.nlm.nih.gov/21300151/

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...